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Abstract. Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino
deficit can determine the texture of the neutrino mass matrix according to three types of neutrino mass
hierarchy: Type A: m1 � m2 � m3, Type B: m1 ∼ m2 � m3, and Type C: m1 ∼ m2 ∼ m3, where mi is
the absolute mass of the ith generation neutrino. The relative sign assignments of the neutrino masses in
each type of mass hierarchy play crucial roles in the stability against quantum corrections. Actually, two
physical Majorana phases in the lepton flavor mixing matrix connect the relative sign assignments of the
neutrino masses. Therefore, in this paper we analyze the stability of the mixing angles against quantum
corrections according to three types of neutrino mass hierarchy (Type A, B, C) and two Majorana phases.
The two phases play crucial roles in the stability of the mixing angles against quantum corrections.

1 Introduction

Recent neutrino-oscillation experiments suggest strong ev-
idence of tiny neutrino masses and lepton flavor mixings
[1–3]. Studies of the lepton flavor mixing matrix, the so-
called Maki–Nakagawa–Sakata (MNS) matrix [4], will give
us important clues of the physics beyond the standard
model. One of the most important studies is the analysis
of the quantum correction of the MNS matrix [5–12].

In order to explain both the solar and the atmospheric
neutrino problems, two mass-squared differences are
needed,

∆m2
solar ≡ ∣∣m2

2 − m2
1

∣∣ and ∆m2
ATM ≡ ∣∣m2

3 − m2
2

∣∣ , (1)

where mi is the ith (i = 1–3) generation neutrino mass
(mi ≥ 0). ∆m2

solar and ∆m2
ATM stand for the mass squared

differences of the solar neutrino [1] and the atmospheric
neutrino solutions [2,3], respectively. Then there are the
following three possible types of neutrino mass hierarchy
[13], which are consistent with the experimental data of
∆m2

solar � ∆m2
ATM:

Type A : m1 � m2 � m3,

Type B : m1 ∼ m2 � m3, (2)
Type C : m1 ∼ m2 ∼ m3,

where mi is the absolute mass of the ith generation neu-
trino. In [10], the question has been studied whether the
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lepton flavor mixing angles are stable or not against quan-
tum corrections for all three types of mass hierarchy with
all considerable relative sign assignments, which are shown
below, in the minimal supersymmetric standard model
(MSSM) with an effective dimension-five operator which
gives the Majorana masses of the neutrinos.
(i) Type A:

case(a1) : ma1
ν = diag.(0, m2, m3), (3)

case(a2) : ma2
ν = diag.(0,−m2, m3). (4)


m1 = 0,

m2 =
√

∆m2
solar,

m3 =
√

∆m2
solar + ∆m2

ATM.




(ii) Type B:

case(b1) : mb1
ν = diag.(m1, m2, 0), (5)

case(b2) : mb2
ν = diag.(m1,−m2, 0). (6)


m1 =

√
∆m2

ATM,

m2 =
√

∆m2
solar + ∆m2

ATM,

m3 = 0.




(iii) Type C:

case (c1): mc1
ν = diag.(−m1, m2, m3), (7)

case (c2): mc2
ν = diag.(m1,−m2, m3), (8)

case (c3): mc3
ν = diag.(−m1,−m2, m3), (9)

case (c4): mc4
ν = diag.(m1, m2, m3). (10)
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
m1 = m0,

m2 =
√

m2
0 + ∆m2

solar,

m3 =
√

m2
0 + ∆m2

solar + ∆m2
ATM.




In [10], it has been found that the above relative sign as-
signments of the neutrino masses in each type play crucial
roles in the stability of the mixing angles against quan-
tum corrections. Actually, two physical Majorana phases
in the lepton flavor mixing matrix connect the above rel-
ative sign assignments of the neutrino masses. Therefore,
in this paper we analyze the stability of mixing angles
against quantum corrections according to three types of
neutrino mass hierarchy (Type A, B, C) and two Majo-
rana phases. Two phases play crucial roles in the stability
of the mixing angles against quantum corrections. In [11,
12], it has already been analyzed that the effect of a Majo-
rana phase plays an important role in the stability against
quantum corrections in two-generation neutrinos.

2 Quantum corrections
to neutrino mass matrix

In the MSSM with the effective dimension-five operator
which gives the Majorana masses of neutrinos, the super-
potential of the lepton–Higgs interactions is given by

W = ye
ij(HdLi)Ej − 1

2
κij(HuLi)(HuLj). (11)

Here the indices i, j (= 1–3) stand for the generation num-
ber. Li and Ei are chiral superfields of the ith generation
lepton doublet and the right-handed charged lepton, re-
spectively. Hu (Hd) is the Higgs doublet which gives Dirac
masses to the up- (down-) type fermions. The neutrino
mass matrix of the three generations, κ, is diagonalized
by

UTκ U = Dκ, (12)

where Dκ is given by

Dκ =


m1 0 0

0 m2 0
0 0 m3


 , (13)

with mi ≥ 0. The unitary matrix U is defined as

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




 eiφ1 0 0

0 eiφ2 0
0 0 1


 , (14)

where φ1,2 denotes the physical Majorana phases of the
lepton sector. In the diagonal basis of charged lepton
masses, U is just the MNS matrix. We can easily show that
one Majorana phase connects cases (a1) and (a2), (b1)
and (b2), and two Majorana phases connect the cases of
(c1)–(c4). Thus, the stabilities of the mixing angles against
quantum corrections are completely determined by three
types of neutrino mass hierarchy (Type A, B, C) and two

Majorana phases φ1,2 in stead of the classifications of (3)–
(10).

We will analyze whether the lepton flavor mixing an-
gles are changed or not by quantum corrections by fitting
the low energy data. We determine the MNS matrix at
the mZ scale to be

U =




cos θ12 sin θ12 0
− sin θ12√

2
cos θ12√

2
1√
2

sin θ12√
2

− cos θ12√
2

1√
2




 eiφ1 0 0

0 eiφ2 0
0 0 1


 , (15)

where we put sin θ23 = 1/21/2 and sin θ13 = 0, which val-
ues are suitable for the atmospheric neutrino experiments
[2,3] and for the CHOOZ experiment [14], respectively.
The mixing angle θ12 depends on the solar neutrino solu-
tions of the large angle MSW solution (MSW-L), the small
angle MSW solution (MSW-S) and the vacuum-oscillation
solution (VO), which are given by1

sin θ12 =




0.0042 (θ = 0.0042) (MSW-S),
1√
2

(
θ = π

4

)
(MSW-L),

1√
2

(
θ = π

4

)
(VO).

(16)

We also use the following values for the mass-squared dif-
ferences in the numerical analyses:

∆m2
solar �




0.8 × 10−5 eV2 (MSW-S),
1.8 × 10−5 eV2 (MSW-L),
0.85 × 10−10 eV2 (VO),

(17)

∆m2
ATM � 3.7 × 10−3 eV2. (18)

The quantum corrections change the neutrino mass ma-
trix; it is given by2 [8,9]

κ̂ (mR) =
κ̂ (mR)33
κ (mZ)33


1 − ε 0 0

0 1 − ε 0
0 0 1




× κ (mZ)


1 − ε 0 0

0 1 − ε 0
0 0 1


 , (19)

at the high energy scale mR, where ε can be estimated to
be

ε � 1 − exp

(
− 1

16π2

∫ ln(mR)

ln(mZ)
y2

τ dt

)
,

� 1
8π2

m2
τ

v2

(
1 + tan2 β

)
ln
(

mR

mZ

)
, (20)

1 In the case of MSW-L, the mixing angle θ = π/4 is not
allowed by the experiments. However, a small deviation from
the θ = π/4 limit does not affect our analyses of the stability
of the mixing angles with respect to quantum corrections

2 Hereafter, we denote the mixing angles and the other phys-
ical parameters at the mR scale by writing with the ˆ mark
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Table 1. Stabilities of the mixing angles with the Type A mass
hierarchy according to the change of φ2 from 0 to π in the case
of mR = 1013 GeV and tanβ = 60

MSW-S MSW-L VO

sin2 2θ̂12 0.005 0.998 0.998
sin2 2θ̂23 0.985–0.99 0.985–0.99 0.99
sin2 2θ̂13 10−7 10−4 10−10

where yτ is the Yukawa coupling of τ , v2 ≡ v2
u + v2

d and
tan β ≡ vu/vd (vu and vd are the vacuum expectation val-
ues of the Higgs bosons, Hu and Hd, respectively). We
neglect the Yukawa couplings of e and µ in (19) and (20),
since those contributions to the renormalization group
equations are negligibly small compared to that of τ [10].
The magnitude of ε can be determined by the value of
tan β and the scale of mR. The unitary matrix Û which
diagonalizes κ̂ shows whether the lepton flavor mixing an-
gles are stable against quantum corrections or not.

The value of ε is not large enough to change the neu-
trino mass matrix κ significantly [9,10]. Therefore, the
neutrino mass matrix κ itself is stable against quantum
corrections.

3 Type A (m1 � m2 � m3)

In both the (a1) and the (a2) case, all mixing angles are
stable against quantum corrections in each sign assign-
ment [10]. This is understood from the analogy of the
two-generation analysis, which shows that the mixing an-
gle of the 2 × 2 mass matrix is not changed significantly
by quantum corrections when there is a large mass hi-
erarchy between the two neutrinos [10]. This situation is
not changed when we consider the Majorana phase con-
tribution as shown in the case of two-generation neutrinos
[11]. The cases (a1) and (a2) are connected by the Majo-
rana phase of φ2, where φ1 is rotated out, since m1 = 0.
The case of φ2 = 0 corresponds to (a1), while the case
of φ2 = π/2 corresponds to (a2). Since Type A has a
large mass hierarchy, all mixing angles are supposed to be
stable against quantum corrections independently of the
value of the Majorana phase φ2. This is really confirmed
by numerical analyses as shown in Table 1, where we use
mR = 1013 GeV and tan β = 60.

4 Type B (m1 ∼ m2 � m3)

In the Type B mass hierarchy, all mixing angles except for
sin θ12 of (b2) are stable against quantum corrections [10].
The analogy of the two-generation neutrino analysis shows
that the mixing angles of sin θ13 and sin θ23 are stable
against quantum corrections, since there are large mass
hierarchies between the first and the third generation, and
between the second and third generation. This is the same
situation as that of Type A. This situation is not changed
by including the Majorana phase contributions of φ1,2 as

Table 2. Stabilities of the mixing angles with the Type B
mass hierarchy according to a change of φ from 0 to π. In this
analysis we use mR = 1013 GeV and tanβ = 60

MSW-S MSW-L VO

sin2 2θ̂12 See Figs. 1, 2
sin2 2θ̂23 0.99 0.99 0.99
sin2 2θ̂13 0 0 0

shown in Table 2, which shows the results of the numerical
analyses in the case of mR = 1013 GeV and tan β = 60.
On the other hand, the mixing angle of θ12 can receive
significant quantum corrections dependent on the relative
sign assignment of m2 as shown in [10]. The mixing angle
of sin θ12 of (b1) receives a quantum correction while that
of (b2) does not. Now we understand that the two cases
(b1) and (b2) are connected by the phase of φ ≡ φ1 − φ2,
which is the only physical phase, since m3 = 0. The case
of φ = 0 corresponds to (b1), while the case of φ = π/2
corresponds to (b2). The phase φ is the parameter which
determines whether the mixing angle θ12 is stable against
quantum corrections or not.

Now, let us show the analytic estimations of the sta-
bilities of the mixing angles in the Type B mass hierarchy.
The neutrino mass matrix of Type B which is diagonalized
is given by

D(B)
κ = m1


1 0 0

0 1 + ξb 0
0 0 0


 , (21)

where

ξb ≡ m2 − m1

m1
� 1

2
∆m2

solar

∆m2
ATM

. (22)

We can determine the mass matrix of κ(B) by using (12)
and (15). Then (19) gives the mass matrix of κ̂(B) at the
high energy scale mR.

The MNS matrix Û (B) which diagonalizes κ̂(B) is given
by

Û (B) =
1 0 0

0 (1 − ε)/
√

1 + (1 − ε)2 1/
√

1 + (1 − ε)2

0 −1/
√

1 + (1 − ε)2 (1 − ε)/
√

1 + (1 − ε)2




×


 cos θ̂12 sin θ̂12 0

− sin θ̂12 cos θ̂12 0
0 0 1




 eiφ̂1 0 0

0 eiφ̂2 0
0 0 1


 , (23)

which means that the mixing angle between the first and
the third generation, which is zero, is unchanged by quan-
tum corrections. The mixing angle of θ̂23 is given by

sin2 2θ̂23 =
(

2(1 − ε)
1 + (1 − ε)2

)2

, (24)

which indicates that the large mixing between the sec-
ond and the third generation is stable with respect to
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Fig. 1. Majorana phase dependence of sin2 2θ̂12 for the MSW-
L and the VO solutions in Type B mass hierarchy in the case
of mR = 1013 GeV and tanβ = 60

quantum corrections. By using (24), we can estimate that
sin2 2θ̂23 � 0.99 in the case of mR = 1013 GeV and tan β =
60, which is consistent with the numerical analysis in Ta-
ble 2. Therefore the mixing between the first and the third
generation and the mixing between the second and the
third generation are stable with respect to quantum cor-
rections as shown in Table 2

How about the mixing between the first and the second
generation?

For the MSW-L and the VO solutions, where sin θ12 =
cos θ12 = 1/21/2 at the mZ scale, the mixing angle of
tan θ̂12 is given by

tan 2θ̂12 � (1 − ε)
√

1 − ε

√
4ξ2

b + ε2 sin2 2φ

ε(1 + cos 2φ)
, (25)

where we use the approximation which neglects the higher
order corrections of ε2, εξb, and ξ2

b . When φ = π/2, the
mixing angle θ̂12 becomes

tan 2θ̂12 = ∞, (26)

which means that the maximal mixing is stable against
quantum corrections. On the other hand, when φ = 0,

tan 2θ̂12 � ξb

ε
, (27)

which shows that the mixing angle of θ̂12 strongly depends
on the magnitude of ε. The large mixing is spoiled when
ξb ≤ ε, which corresponds to the region of tan β ≥ 10
for the MSW-L solution, and any value of tan β for the
VO solution when we take mR = 1013 GeV. In Fig. 1, we
show the change of sin2 2θ̂12 due to the continuous change
of the Majorana phase φ in the case of tan β = 60 and
mR = 1013 GeV. As the Majorana phase φ changes from
0 to π/2, the value of sin2 2θ̂12 changes from 0 to 1. The
large deviation from 1 of sin2 2θ̂12 means that the mixing
angle θ12 is unstable with respect to quantum corrections.
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10−6

10−7

 

 

 

 

0  π/4  π/2  3π/4  π

si
n2 2θˆ 12

φ

MSW-S

Fig. 2. Majorana phase dependence of sin2 2θ̂12 for the MSW-S
solution in the Type B mass hierarchy in the case of tan β = 60
and mR = 1013 GeV

Figure 1 shows that the mixing angle θ12 changes from
being unstable to being stable as φ changes from 0 to π.
The lines of the MSW-L and the VO solutions are almost
overlapping in Fig. 1, since the discrepancy of the ξb’s for
the two solutions is negligible compared with the quantum
correction, ε = 0.1, when tan β = 60 and mR = 1013 GeV.

As for the MSW-S solution, φ = 0 induces

tan 2θ̂12 � tan 2θ12

(
1 +

1
cos 2θ12

ε

ξb

)−1

, (28)

while φ = π/2 induces

tan 2θ̂12 � tan 2θ12. (29)

Equations (28) and (29) show that the mixing angle of
θ12 is not changed in the region of tan β ≤ 10 when φ =
0, while it is not changed independently of tan β when
φ = π/2. The above conclusions are the same as those
of [10]. In Fig. 2, we show the value of sin2 2θ̂12 at the
mR = 1013 GeV scale in the case of tan β = 60 according
to the continuous change of φ from 0 to π. Figure 2 shows
that the mixing angle θ12 changes from being unstable to
being stable corresponding to a change of φ from 0 to π.

5 Type C (m1 ∼ m2 ∼ m3)

For the Type C mass hierarchy, it has been shown in [10]
that the MNS matrix approaches a definite unitary matrix
according to the relative sign assignments of the neutrino
mass eigenvalues, as the effects of quantum corrections be-
come large enough to neglect the mass-squared differences
of the neutrinos. The independent parameters of the MNS
matrix at the mR scale approach the following fixed values
in the large limit of quantum corrections:
case (c1): diag.(−m1, m2, m3)

Ue2 =
sin θ12√

1 + cos2 θ12
,
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Table 3. The fixed values of the mixing angles for the MSW-L
and the VO solutions in the large limit of quantum corrections
given by (30)–(36)

(c1) (c2) (c3) (c4)

sin2 2θ̂12 0.96 0.96 0.0 0.0
sin2 2θ̂13 0.56 0.56 0.0 0.0
sin2 2θ̂23 0.36 0.36 1.0 0.0

Ue3 = −1
2

sin 2θ12√
1 + cos2 θ12

,

Uµ3 =
1√
2

sin2 θ12√
1 + cos2 θ12

. (30)

case (c2): diag.(m1,−m2, m3)

Ue2 = sin θ12,

Ue3 =
1
2

sin 2θ12√
1 + sin2 θ12

,

Uµ3 =
1√
2

cos2 θ12√
1 + sin2 θ12

. (31)

case (c3): diag.(−m1,−m2, m3)

Ue2 = 0, Ue3 = 0, Uµ3 =
1√
2
. (32)

case (c4): diag.(m1, m2, m3)

Ue2 = 0, Ue3 = 0, Uµ3 = 0. (33)

We can easily obtain the values of the mixing angles by
using the relations of [15]:

sin2 2θ12 = 4
U2

e2

1 − |Ue3|2
(

1 − U2
e2

1 − |Ue3|2
)

, (34)

sin2 2θ13 = 4|Ue3|2
(
1 − |Ue3|2

)
, (35)

sin2 2θ23 = 4
U2

µ3

1 − |Ue3|2
(

1 − U2
µ3

1 − |Ue3|2
)

. (36)

As shown above, the cases of (c1)–(c4) are connected by
the Majorana phases φ1 and φ2.

Figure 3 shows the values of the mixing angles at the
high energy scale mR = 1013 GeV for the MSW-L and
the VO solutions according to continuous changes of the
Majorana phases φ1 and φ2 in the case of tan β = 60. Un-
der the conditions that the effects of quantum corrections
are large enough to neglect the mass-squared differences
of the neutrinos, the results of the MSW-L solution are
the same as those of the VO solution [10]. Table 3 shows
the fixed values of the mixing angles for the MSW-L and
the VO solutions in the large limit of quantum corrections
which are obtained from (30)–(33) by using (34)–(36).

The deviations from the values at the mZ scale,
sin2 2θ12 = 1, sin2 2θ13 = 0 and sin2 2θ23 = 1, indicate
that the mixing angles receive significant quantum correc-
tions. For sin2 2θ̂12, Table 3 shows that the cases of (c1)

Table 4. The fixed values of the mixing angles for the MSW-
S solution in the large limit of quantum corrections given by
(30)–(36)

(c1) (c2) (c3) (c4)

sin2 2θ̂12 0.0 0.0 0.0 0.0
sin2 2θ̂13 0.0 0.0 0.0 0.0
sin2 2θ̂23 0.0 1.0 1.0 0.0

and (c2) conserve maximal mixing, while the cases of (c3)
and (c4) do not, in the large limit of quantum corrections.
From (15), we can show that the change of φ1 from 0
to π/2 with the relation |φ2 − φ1| = 0 (|φ2 − φ1| = π/2)
corresponds to the change of (c4) to (c3) ((c2) to (c1)).
Figure 3a shows that the unstable region of sin2 2θ̂12

<
∼ 0.1

occurs around the line of |φ2 − φ1| = 0, and the stable
region of sin2 2θ̂12 ∼ 1.0 is located around the line of
|φ2 − φ1| = π/2. Since the cases of (c1) and (c2) have
masses with opposite signs between the first and second
generations, the mixing angle is stable from the anal-
ogy of two-generation neutrinos. Therefore, the maximal
mixing between the first and second generation is con-
served in the continuous region preserving the relation of
|φ2 − φ1| = π/2. As for the stability of sin2 2θ̂13, Table 3
shows that the cases of (c3) and (c4) conserve zero mix-
ing, while the cases of (c1) and (c2) do not. Figure 3b
shows that the stable region occurs around the line of
|φ2 − φ1| = 0, which connects (c3) and (c4), and the un-
stable region is located around the line of |φ2 − φ1| = π/2,
which connects (c1) and (c2). For the stability of sin2 2θ̂23,
Table 3 shows that the case of (c3) only conserves maxi-
mal mixing, and the case of (c4) induces zero mixing. The
two cases of (c1) and (c2) induce sin2 2θ̂23 ∼ 0.36. These
situations are connected in a continuous manner by the
two Majorana phases φ1 and φ2 as shown Fig. 3c.

Figure 4 shows the values of the mixing angles at the
high energy scale mR = 1013 GeV for the continuous
change of the Majorana phases for the MSW-S solution in
the case of tan β = 60. Table 4 shows the fixed values of the
mixing angles for the MSW-S solution in the large limit
of quantum corrections, which are obtained from (30)–
(33) by using (34)–(36). The deviations from the values
at the mZ scale, sin2 2θ12 = 7.1 × 10−5, sin2 2θ13 = 0 and
sin2 2θ23 = 1, indicate that the mixing angles receive sig-
nificant quantum corrections. For sin2 2θ̂12, Table 4 shows
that all the cases (c1)–(c4) make it zero in the large limit
of quantum corrections. Figure 4a shows that the unsta-
ble region of sin2 2θ̂12 > 0.2 occurs around the points
of (φ1, φ2) � (π/2, π/30) and (φ1, φ2) � (π/2, 29π/30).
For the stability of sin2 2θ̂13, Table 4 shows that all the
cases (c1)–(c4) conserve zero mixing. Figure 4b shows that
sin2 2θ̂13 is stable with respect to quantum corrections for
any values of the two Majorana phases. For the stability
of sin2 2θ̂23 Table 4 shows that the cases of (c2) and (c3)
conserve maximal mixing, while the cases of (c1) and (c4)
do not, in the large limit of quantum corrections. Figure 4c
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Fig. 3a–c. The contour plots of a sin2 2θ̂12, b sin2 2θ̂13 and
c sin2 2θ̂23, at mR = 1013 GeV in the case of the MSW-L and
the VO solutions with tanβ = 60

shows that the stable region is located around the lines of
φ2 = π/2, which connect (c2) and (c3) by changing φ1
from 0 to π/2, and the unstable region occurs around the
lines φ2 = 0 and φ2 = π, which connect (c1) and (c4) by
changing φ1 from 0 to π/2.

6 Summary

Neutrino-oscillation solutions for the atmospheric
neutrino anomaly and the solar neutrino deficit can deter-
mine the texture of the neutrino mass matrix according
to three types of neutrino mass hierarchy [13]: Type A:
m1 � m2 � m3, Type B: m1 ∼ m2 � m3, and Type
C: m1 ∼ m2 ∼ m3. We found that the relative sign as-

signments of the neutrino masses in each type of mass
hierarchy play crucial roles in the stability against quan-
tum corrections. Actually, two physical Majorana phases
in the lepton flavor mixing matrix connect the relative sign
assignments of the neutrino masses. Therefore, in this pa-
per we analyze the stability of the mixing angles against
quantum corrections according to three types of neutrino
mass hierarchy (Type A, B, C) and two Majorana phases.
The two phases play crucial roles in the stability of the
mixing angles against quantum corrections. The results in
[10], where the stabilities of the mixing angles in (a1) and
(a2), (b1) and (b2), (c1)–(c4) with respect to quantum
corrections are argued, are reproduced by taking definite
values of the two Majorana phases.
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Fig. 4a–c. The contour plots of a sin2 2θ̂12, b sin2 2θ̂13 and
c sin2 2θ̂23, at mR = 1013 GeV in the case of the MSW-S solu-
tion with tanβ = 60
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